Wzorcowanie przyrządów pomiarowych

Wzorcowaniem określa się ogół czynności ustalających relację między wartościami wielkości mierzonej wskazanymi przez przyrząd pomiarowy a odpowiednimi wartościami wielkości fizycznych, realizowanymi przez wzorzec jednostki miary wraz z podaniem niepewności tego pomiaru.

W najprostszym przypadku polega to na określeniu różnicy pomiędzy wskazaniem przyrządu wzorcowego (wzorca miary wyższego rzędu) a wskazaniem przyrządu wzorcowanego z uwzględnieniem niepewności pomiaru dokonanego przy pomocy przyrządu wzorcowego.

Czynność wzorcowania przeprowadzają w Polsce:
1) na podstawie ustawy prawo o miarach – organy administracji miar (prezes Głównego Urzędu Miar, dyrektorzy okręgowych urzędów miar i naczelnicy obwodowych urzędów miar)
2) na podstawie normy PN-EN ISO 17025 oraz ustawy o systemie oceny zgodności – laboratoria wzorcujące akredytowane przez Polskie Centrum Akredytacji (PCA),
3) na podstawie ustawy o swobodzie działalności gospodarczej (działalność polegająca na wzorcowaniu nie jest koncesjonowana) – nieakredytowane laboratoria wzorcujące oraz użytkownicy przyrządów pomiarowych.

Celem wzorcowania jest określenie kondycji metrologicznej wzorcowanego przyrządu, określającej jego przydatność do wykonywania pomiarów,  lub poświadczenie, że wzorcowany przyrząd spełnia określone wymagania metrologiczne.

Wynik wzorcowania poświadczany jest w świadectwie wzorcowania.
Świadectwo wzorcowania to dokument potwierdzający że przyrząd spełnia określone właściwości metrologiczne, a tym samym pomiary wykonywane za pomocą tego przyrządu można uznać za wiarygodne i rzetelne.

Obecnie nie istnieją żadne przepisy prawne wyznaczające okresy pomiędzy wzorcowaniami, ani okresy ważności świadectw wzorcowania.

  • ISO 9001 – Tam, gdzie niezbędne jest zapewnienie wiarygodnych wyników, wyposażenie pomiarowe należy wzorcować i/lub sprawdzać w ustalonych odstępach czasu
  • ISO 22000 –  wyposażenie pomiarowe i metody używane
    powinny być kalibrowane i weryfikowane w zaplanowanych odstępach czasu…”

Terminy powtórnych wzorcowań powinny być ustalane przez samego użytkownika przyrządu pomiarowego.

Przyrządy przenośne, narażone na wstrząsy, z regulatorami mechanicznymi lub elektrycznymi i intensywnie eksploatowane, lub eksploatowane w trudnych warunkach –  powinny być wzorcowane częściej (np. raz na rok), natomiast takie, które nie mają regulacji, są przechowywane w warunkach laboratoryjnych i są rzadko używane zwykle wzorcuje się rzadziej (2-3 lata).

Świadectwo wzorcowania traci swoją ważność w przypadku uszkodzenia przyrządu pomiarowego lub kiedy wskazania zaczynają budzić wątpliwość.

Najpopularniejsze wzorcowane przyrządy pomiarowe mierzące ciśnienie, temperaturę lub wilgotność:
termometry szklane laboratoryjne
manometry kontrolne do prób ciśnieniowych
termohigrometry mierzące temperaturę i wilgotność otoczenia

 

Próba wodna

W okresie średniowiecza „próba wody” służyła ustalaniu winy – jak związany i wrzucony do wody podejrzany tonął – był niewinny.
Dzisiaj „próba wodna” służy badaniu szczelności instalacji wodociągowej i grzewczej.
Przepisy ogólne
1. Badanie szczelności instalacji należy przeprowadzić przed zakryciem bruzd i otworów, przed pomalowaniem przewodów i ich zaizolowaniem.
2. Badanie szczelności należy przeprowadzać wodą, podczas odbiorów częściowych instalacji dopuszcza się badanie szczelności sprężonym powietrzem.
3. Podczas badania szczelności zabrania się podnoszenia ciśnienia powyżej ciśnienia próby nawet chwilowo.
Przygotowanie instalacji do próby szczelności
1.Przed przystąpieniem do badania szczelności instalacja musi być przepłukana wodą. Czynność płukania należy wykonywać przy dodatniej temperaturze zewnętrznej a budynek nie może być przemarznięty.
2.Od instalacji wody ciepłej należy odłączyć wszystkie urządzenia zabezpieczające przed przekroczeniem ciśnienia dopuszczalnego.
3.Po napełnieniu instalacji wodą należy sprawdzić szczelność wszystkich połączeń i kompletność zaślepień, brak roszenia na dławnicach zaworów.
Manometr kontrolny do próby
Przebieg badania szczelności wodą zimną
1.Do instalacji w najniższym jej punkcie należy podłączyć pompę ręczną wyposażoną w zbiornik
wody, manometr zawory odcinające, zawór zwrotny i spustowy.
2. Manometr powinien mieć średnicę 160mm, klasę dokładności 0,6 i zakres tarczy co najmniej 50% większy od ciśnienia próbnego. Działka elementarna powinna wynosić:
0,1 bar przy ciśnieniu próby do 10 bar (0,01 MPa przy ciśnieniu 1 MPa)
0,2 bar przy ciśnieniu większym (0,02 MPa przy ciśnieniu większym)
3. Badanie szczelności możemy rozpocząć co najmniej po jednej dobie od napełnienia instalacji
wodą i jej odpowietrzeniu jak też stwierdzeniu braku roszenia.
4.Po stwierdzeniu gotowości instalacji należy podnieść za pomocą pompy ciśnienie w instalacji do wysokości ciśnienia próby. Wartość ciśnienia próby należy przyjmować w wysokości 1,5x ciśnienia
roboczego ale nie mniej niż 10 bar (1 MPa)
5. Co najmniej 3 godziny przed i podczas badania temperatura i otoczenia nie powinna się zmienić o więcej niż 3K a pogoda nie powinna być słoneczna. Po przeprowadzeniu próby należy sporządzić protokół podając ciśnienie próby, fragment badanej instalacji i jej wynik.
Badanie instalacji sprężonym powietrzem
1. Badanie można przeprowadzić powietrzem nie zawierającym oleju.
2. Wartość ciśnienia badania nie powinna przekraczać 3 bar.
3. Wszelkie nieszczelności należy lokalizować akustycznie lub środkiem pianotwórczym.
4. Wymagania odnośnie manometru i warunków pogodowych są identyczne jak dla badania wodą.
5. Wynik należy uznać za pozytywny jeśli manometr nie wykaże spadku ciśnienia.
Próba szczelności wodą ciepłą
Instalacje ciepłej wody użytkowej i cyrkulacji po pozytywnej próbie szczelności woda zimną, poddaje próbie szczelności w stanie gorącym wodą o temperaturze 60°C, przy ciśnieniu roboczym instalacji. Obserwuje się przy tym zmiany wydłużeń cieplnych, pracę kompensatorów zachowanie uchwytów na instalacji. Instalacji w czasie próby nie może wykazywać roszenia.
Więcej informacji: http://www.instsani.pl/

2017 ostatnim rokiem termometrów rtęciowych

ROZPORZĄDZENIE KOMISJI (UE) NR 847/2012 z dnia 19 września 2012 r wprowadziło zakaz wprowadzania do obrotu termometrów lekarskich oraz urządzeń pomiarowych przeznaczonych do powszechnej sprzedaży zawierających rtęć i przeznaczonych do użytku przemysłowego i profesjonalnego.

Rozporządzenie przewiduje także odstępstwo od ograniczenia dla m.in. termometrów przeznaczonych wyłącznie do przeprowadzania testów zgodnie z normami, które wymagają stosowania termometrów rtęciowych, do dnia 10 października 2017 r.
Ponieważ ustawodawca nie określił katalogu norm do jakich odnosi się powyższy zapis, należy przyjąć, iż jest to katalog otwarty. Oznacza to, że do dnia 10 października 2017 r. dozwolone jest wprowadzenie do obrotu termometrów rtęciowych przeznaczonych do przeprowadzania testów zgodnie z wszystkimi normami.
„Wprowadzenie do obrotu” rozumiane jest jako odpłatne lub nieodpłatne dostarczenie lub udostępnienie stronie trzeciej.

Termometry rtęciowe przeznaczone do przeprowadzania testów to np. termometry laboratoryjne oraz termometry meteorologiczne.

Należy dodać, że nabyte termometry można będzie po 10 pażdziernika 2017r  nadal używać – aż do ich fizycznego zniszczenia.

Rejestracja temperatury – monitoring w przemyśle spożywczym

Rejestratory temperatury serii TERMIO.

Wyprodukowane w Polsce precyzyjne rejestratory temperaTermio-15tury.
Bardzo dokładny pomiar temperatury z możliwością zapisu wyników pomiarów w pamięci wewnętrznej.
Zapisane w pamięci wewnętrznej wyniki można przenieść do pamięci komputera z systemem Windows w celu ich dalszej obróbki.

W zależności od typu rejestratora i sposobu pomiaru temperatury (czujnik wbudowany lub na przewodzie) miernik może służyć do monitorowania temperatury podczas przechowywania i transportu szczepionek, leków, żywności, podczas procesu produkcyjnego, magazynowania itp.

Funkcje i dane wspólne rejestratorów Termio:
– pomiar temperatury w °C
– rejestracja temperatury (możliwość zapisu 32000 wyników pomiaru)
– sygnalizacja rejestracji
– wyświetlanie informacji o przekroczonych wartościach dopuszczalnych strzałkami na wyświetlaczu oraz migająca czerwoną diodą
– start bezpośrednio z komputera, z opóźnieniem czasowym lub za pomocą przycisku START/STOP
– dostęp do wartości maksymalnej i minimalnej zapisanej w pamięci
– sygnalizacja niskiego stanu baterii
– wyświetlacz LCD
– zasilanie bateria 1/2xAA 3,6V
– interfejs USB
– wymiary obudowy 45x100x19 mm
– stopień ochrony obudowy IP65
– waga 85g

Dane szczegółowe rejestratorów Termio:

Rejestrator temperatury Termio-1 z czujnikiem zewnętrznym na przewodzie

  • zakres mierzonych temperatur -50°C do 270°C
  • rozdzielczość w całym zakresie pomiarowym 0,01 °C
  • dokładność pomiaru -/+0,07°C lub lepsza
  • częstość zapisu od 1 sekundy
  • częstość próbkowania pomiarów 2 x 1 sekundę

 

Rejestrator temperatury Termio-2 z czujnikiem zewnętrznym na przewodzTermio-2ie

  • zakres mierzonych temperatur -50°C do 270°C
  • rozdzielczość w całym zakresie pomiarowym 0,01 °C
  • dokładność pomiaru w zakresie 0°C-100°C: -/+0,07°C, w zakresie do 150°C: -/+0,15°C, do 200°C: -/+0,3°C
  • częstość zapisu od 1 minuty
  • częstość próbkowania pomiarów 2 x 1 minutę (zmniejszenie częstotliwości próbkowania w stosunku do Termio-1 wydłuża żywotność baterii)

 

Rejestrator temperatury Termio-15 z czujnikiem wbudowanym w urządzenie

  • zakres mierzonych temperatur -30°C do 70°C
  • rozdzielczość w całym zakresie pomiarowym 0,01 °C
  • dokładność pomiaru -/+0,3°C lub lepsza
  • częstość zapisu od 1 minuty

 

Rejestrator temperatury Termio-31 z wymienną sondą pomiarową typu K

  • zakres mierzonych temperatur zależny od zastosowanej sondy (w przedziale -200°C do 1400 °C)
  • rozdzielczość wskazań 0,01 °C
  • dokładność pomiaru lepsza niż 1°C (zależna od rodzaju sondy)
  • częstość zapisu od 1 sekundy

[Reklama] Termometry elektroniczne HACCP

Wysokiej jakości przemysłowe i wzorcowe termometry elektroniczne – duża dokładność pomiaru, niska cena, szerokie zastosowanie.
Przykładowe zastosowania: do laboratoriów, w przemyśle spożywczym (do wędzarni, do mięsa, do pieczenia, do mrożonek, do mleka),w przemyśle farmaceutycznym, w transporcie.

Termometry z sondą penetracyjną (szpikulcową) są niezbędne np. przy kontroli temperatury przy odbiorze produktów spożywczych w transporcie (HACCP)

Nowe – ulepszone wersje! Równie wysoka dokładność pomiaru przy szerszym zakresie pomiarowym temperatury.

Termometry wyposażone w świadectwo wzorcowania wystawione przez laboratorium pomiarowe producenta.

Termometr elektroniczny DT-1Termometr elektroniczny DT-1

  •  zakres mierzonych temperatur -50°C do 270°C
  • zakres temperatur pracy -30°C do 40°C
  • rozdzielczość 0,1°C
  • dokładność pomiaru -/+0,1°C
  • zasilanie 1/2xAA
  • wyświetlacz LCD 3 1/2 cyfry
  • wymiary obudowy 45x100x19 mm
  • stopień ochrony obudowy IP66
  • wymiary sondy 3×100 mm
  • długość przewodu Lp=1 m
  • materiał osłony czujnika stal kwasoodporna 1H18N9T

 

Termometr elektroniczny DT-34Termometr elektroniczny DT-34

  • zakres mierzonych temperatur -50°C do 270°C
  • zakres temperatur pracy 0°C do 40°C
  • rozdzielczość 0,1°C
  • dokładność pomiaru -/+0,1°C
  • zasilanie bateryjne 2xAA
  • wyświetlacz LCD 3 1/2 cyfy
  • wymiary obudowy 150x82x29 mm
  • stopień ochrony obudowy IP66
  • wymiary sondy 3,3×120 mm
  • długość przewodu 1 m
  • materiał osłony czujnika stal kwasoodporna 1H18N9Tsklep internetowy
Category: Reklama, Temperatura | Tags: ,

Próby gazowe – manometry kontrolne

Próba ciśnieniowa instalacji to inaczej sprawdzenie szczelności przewodów instalacyjnych. Należy ją przeprowadzić po zakończeniu montażu, ale przed podłączeniem armatury i urządzeń sanitarnych. Pozytywny wynik próby gwarantuje szczelność instalacji i brak kłopotów z jej późniejszą eksploatacją.

Warunki sprawdzenia instalacji gazowej określa rozporządzenie.

Wyciąg z Rozporządzenie Ministra Spraw Wewnętrznych i Administracji w sprawie warunków technicznych użytkowania budynków mieszkalnych Dz.U.1999.74.836 z dnia 16 sierpnia 1999 r. w sprawie warunków technicznych użytkowania budynków mieszkalnych:

§ 44. Główna próba szczelności

1. W przypadku:
1) wykonania nowej instalacji gazowej,
2) jej przebudowy lub remontu,
3) wyłączenia jej z użytkowania na okres dłuższy niż 6 miesięcy
– należy przed przekazaniem jej do użytkowania przeprowadzić główną próbę szczelności.

2. Główną próbę szczelności przeprowadza się odrębnie dla części instalacji przed gazomierzami oraz odrębnie dla pozostałej części instalacji z pominięciem gazomierzy.

3. Główną próbę szczelności przeprowadza się na instalacji nie posiadającej zabezpieczenia antykorozyjnego, po jej oczyszczeniu, zaślepieniu końcówek, otwarciu kurków i odłączeniu odbiorników gazu.

4. Manometr użyty do przeprowadzenia głównej próby szczelności powinien spełniać wymagania klasy 0,6 i posiadać świadectwo legalizacji.

5. Zakres pomiarowy manometru powinien wynosić:

1) 0-0,06 MPa w przypadku ciśnienia próbnego wynoszącego 0,05 MPa,

2) 0-0,16 MPa w przypadku ciśnienia próbnego wynoszącego 0,1 MPa.

6. Ciśnienie czynnika próbnego w czasie przeprowadzania głównej próby szczelności powinno wynosić 0,05 MPa. Dla instalacji lub jej części znajdującej się w pomieszczeniu mieszkalnym lub w pomieszczeniu zagrożonym wybuchem ciśnienie czynnika próbnego powinno wynosić 0,1 MPa.

7. Wynik głównej próby szczelności uznaje się za pozytywny, jeżeli w czasie 30 minut od ustabilizowania się ciśnienia czynnika próbnego nie nastąpi spadek ciśnienia.

8. Z przeprowadzenia głównej próby szczelności sporządza się protokół, który powinien być podpisany przez właściciela budynku oraz wykonawcę instalacji gazowej.

Manometr kontrolny w klasie 0,6Manometry do pomiarów wzorcowych i testowych ciśnienia gazów i cieczy chemicznie obojętnych na stopy miedzi i nie powodujących zatorów w układach ciśnienia.
Ciśnieniomierze niezbędne do „prób gazowych” i „prób wodnych” na szczelność instalacji.
Manometry oznakowane indywidualnym numerem niezbędnym do wpisania do protokołu z przeprowadzenia próby szczelności.
Manometry wyposażone w świadectwo wzorcowania wystawione przez Urząd Miar.sklep internetowy

Pomiar bez kontaktu – pirometry

Pirometr jest przyrządem pomiarowym służącym do bezkontaktowego pomiaru temperatury powierzchni.

Każdy przedmiot o temperaturze dodatniej emituje promieniowanie podczerwone, niewidoczne dla oczu. Natężenie tego promieniowania jest tym większe, im wyższa jest temperatura przedmiotu.

Pirometr mierzy natężenie promieniowania podczerwonego dochodzącego od przedmiotu do jego obiektywu.

W doborze pirometru – oprócz zakresu pomiarowego i dokładności pomiaru – należy wziąć pod uwagę następujące parametry:

– rozdzielczość optyczna – wyrażana jest stosunkiem odległości D do średnicy pola pomiaru S. Np. dla rozdzielczości 10:1 przy średnicy mierzonego przedmiotu 1cm odległość nie może przekroczyć 10 cm. W przeciwnym przypadku pirometr będzie zbierał promieniowanie podczerwone nie tylko z przedmiotu, ale także z otoczenia (tła).

– współczynnik emisyjności (zdolność do wysyłania promieniowania podczerwonego) – standardowe pirometry dostarczane są z współczynnikiem emisyjności ustawionym na 0,95 (ciało prawie czarne). Do pomiaru temperatury jasnych powierzchni należy stosować pirometry ze zmiennym współczynnikiem emisyjności, lub „przyczerniać” powierzchnię mierzonego przedmiotu

Pirometry - kliknij aby kupić

Category: Temperatura | Tags: , ,

Jak metal z metalem – termometry bimetaliczne

Tarczowe termometry bimetaliczne mierzą za pomocą dwóch kawałków metalu (bimetalu).

Element pomiarowy wykonany jest z pasków dwóch różnych metali lub stopów złączonych ze sobą na całej długości w ten sposób, że wzajemne przesunięcia wzdłużne obu pasków są niemożliwe. Oba paski mają różne współczynniki rozszerzalności. Zmiana temperatury powoduje powstawanie różnicy długości pasków, w wyniku czego połączone paski zaczynają się odginać. Wielkość wygięcia płytki bimetalicznej jest funkcją temperatury.

W termometrach bimetalicznych montowany jest najczęściej bimetal zwinięty spiralnie lub śrubowo. Jeden koniec połączony jest ze wskazówką na podzielni. Zmiany temperatury i zmiany odkształceń spirali powodują ruch wskazówki na podzielni.

Termometr bimetaliczny

Category: Temperatura | Tags: ,

Jak dawniej mierzono temperaturę

Pierwszym „urządzeniem” do mierzenia temperatury był ludzki palec. Poprzez dotyk można określić czy dotykana powierzchnia jest zimna, ciepła czy wręcz gorąca. Garncarze, piekarze, kowale oraz platnerze potrafili określić przybliżoną temperaturę po barwie rozgrzanego przedmiotu. „Pomiar” ten nie można jednak nazwać dokładnym.

Pierwszy przyrząd wykorzystujący cieplną rozszerzalność ciał opisał w III w p.n.e. Filon z Bizancjum, grecki filozof, pisarz i mechanik. Przyrząd ten nie był jeszcze termometrem, tylko termoskopem – pozwalał tylko na określenie różnicy temperatury ciał. Przyrząd składał się z jednostronnie zasklepionej rurki. Jej otwarty koniec zanurzony był z kolei w naczyniu napełnionym płynem. Rurka nie miała skali, a jedynie dwa ruchome znaczniki umożliwiające zaznaczanie zmiany temperatury.

W 1593 roku Galileusz zbudował pierwszy nowożytny termoskop modyfikując termoskop Filona z Bizancjum. Galileusz zmodyfikował to urządzenie, stosując zamiast rurki rozszerzającą się ku górze – bańkę. Poprawił w ten sposób czułość wskaźnika.

Termoskop miał podstawową wadę –  reagował nie tylko na zmiany temperatury, ale także na zmiany ciśnienia atmosferycznego

Termoskop

Za wynalazcę urządzenia zwanego termometrem (miernika temperatury posiadającego skalę termometryczną) uważa się holenderskiego fizyka i inżyniera Gabriela Fahrenheita. Na początku XVIII opracował wczesne wersje termometru – najpierw alkoholowy, później rtęciowy. Termometr składał się z wąskiej, szklanej rurki ze zbiorniczkiem na ciecz u dołu. Zbiorniczek wypełniony był cieczą (patrz – Termometr cieczowy).  Fahrenheit wprowadził skalę pomiaru temperatury, nazwaną później jego nazwiskiem (patrz – Skale termometryczne).

 

Category: Temperatura | Tags: ,

Termometry zamknięte w klatce – termometry meteorologiczne

Meteorologia to nauka zajmująca się badaniem zjawisk fizycznych i procesów zachodzących w atmosferze. Jednym z podstawowych narzędzi niezbędnych do wykonywania badań meteorologicznych jest klatka meteorologiczna. Umieszczone w klatce instrumenty meteorologiczne służą do pomiarów takich wielkości jak temperatura, ciśnienie, wilgotność, kierunek i prędkość wiatru.

W wyposażeniu klatki meteorologicznej znajdują się między innymi termometry meteorologiczne: zwykły, maksymalny oraz minimalny.

   Termometr meteorologiczny zwykły Termometr meteorologiczny maksymalnyTermometr meteorologiczny minimalny

Termometr meteorologiczny zwykły przeznaczony jest do określania aktualnej – w momencie odczytu – temperatury badanego medium.
Zakres wskazań termometru: -37+50°C dz. 0,2°C.
Dopuszczalny błąd wskazań w zakresie temperatur
-37 – 21°C        ±0,4°C
-20 – 0°C          ±0,3°C
0 + 50°C         ±0,2°C
Termometr meteorologiczny zwykły wykonany jest zgodnie z normą
BN-76/5531-06

Termometr meteorologiczny maksymalny przeznaczony jest do określania maksymalnej temperatury badanego medium w danym przedziale czasu np. doby, miesiąca.
Zakres wskazań termometru: -35+50°C dz. 0,5°C
Dopuszczalny błąd wskazań w zakresie temperatur
-35 + 50°C ±0,3°C
Termometr meteorologiczny maksymalny wykonany jest zgodnie z normą BN-76/5531-07
Termometr meteorologiczny maksymalny powinien pracować w pozycji pionowej. Po odczytaniu temperatury należy strząsnąć słupek rtęci przez urządzenie maksymalne jak w termometrze lekarskim rtęciowym.

Termometr meteorologiczny minimalny przeznaczony jest do określania minimalnej temperatury badanego medium w danym przedziale czasu np. doby, miesiąca.
Zakres wskazań termometru: -50+35°C dz. 0,5°C
Dopuszczalny błąd wskazań w zakresie temperatur
-30 + 35°C ±0,5°C
-50 – 30°C ±1,0°C
Termometr meteorologiczny minimalny wykonany jest zgodnie z normą BN-76/5531-08
Przed pomiarem termometr należy obrócić zbiornikiem do góry, aby wskaźnik w kapilarze spłynął do menisku cieczy. Termometr minimalny należy umieścić w pozycji poziomej. Przy spadającej temperaturze wskaźnik jest ściągany w dół przez napięcie powierzchniowe cieczy. Gdy temperatura rośnie wskaźnik pozostaje przy wartości temperatury minimalnej.