Tag Archives: termometr

Tabela współczynników emisyjności – pirometry

Pirometr mierzy natężenie promieniowania podczerwonego dochodzącego od przedmiotu do jego obiektywu. Zmierzoną wielkość promieniowania przyrząd przelicza na odpowiadającą mu temperaturę przedmiotu i pokazuje wartość tej temperatury na wyświetlaczu.

Materiały mają różną zdolność wysyłania promieniowania podczerwonego ze swojej powierzchni. Właściwość ta zależy od gładkości i barwy powierzchni. Materiały o powierzchni matowej i ciemnej lepiej emitują promieniowanie podczerwone niż materiały o powierzchni gładkiej i jasnej.

Współczynnik emisyjności określa się w zakresie od 0 do 1. W celu otrzymania prawidłowego wyniku pomiaru pirometrem należy wartość współczynnika emisyjności materiału wprowadzić do pamięci wewnętrznej przyrządu. Pirometr uwzględnia tę wartość w obliczeniach.

W prostych pirometrach współczynnik emisyjności jest ustawiony na stałe na wartość 0,95, typową dla większości materiałów.

Materiał (temperatura materiału)  Współczynnik emisyjności
 Aluminium, bardzo utlenione (93°C)  0,2
 Aluminium, polerowane (100°C)  0,09
 Aluminium, nieutlenione (25°C)  0,02
 Aluminium, nieutlenione (100°C)  0,03
 Aluminium, platerowane(170°C)  0,04
 Mosiądz, utleniony (200°C)  0,61
 Cegła, zaprawa murarska, tynki (20°C)  0,93
 Murarstwo (40°C)  0,93
 Odlewne żelazo utlenione (200°C)  0,64
 Chrom (40°C)  0,08
 Chrom, polerowany (150°C)  0,06
 Glina, spalone (70°C)  0,91
 Beton (25°C)  0,93
 Miedź, utleniona (130°C)  0,76
 Miedź, polerowana (40°C)  0,03
 Miedź, platerwana (40°C)  0,64
 Miedź z lekkim nalotem (20°C)  0,04
 Korek (20°C)  0,7
 Bawełna (20°C)  0,77
 Szkło (90°C)  0,94
 Granit (20°C)  0,45
 Gips (20°C)  0,9
 Lód, gładk (0°C)  0,97
 Żelazo (20°C)  0,24
 Żelazo z odlewną powierzchnią (100°C)  0,8
 Żelazo z platerowaną powierzchnią (20°C)  0,77
 Ołów (40°C)  0,43
 Ołów, szary utlenione (40°C)  0,28
 Ołów, utleniony (40°C)  0,43
 Marmur, biały (40°C)  0,95
 Farby olejne (wszystkie kolory) (90°C)  0,92-0,96
 Farby, czarna, matowa (80°C)  0,97
 Farby, niebieska na folii aluminiowej (40°C)  0,78
 Farby, biały (90°C)  0,95
 Farby, żółta, 2 warstwy na folii aluminiowel (40°C)  0,79
 Papier (20°C)  0,97
 Plastik: PE, PP, PVC (20°C)  0,94
 Porcelana (20°C)  0,92
 Radiator, czarny anodowany (5°C)  0,98
 Guma, twarda(23°C)  0,94
 Guma, miękka, szara (23°C)  0,89
 Piaskowiec (40°C)  0,67
 Stal platerowana na zimno (93°C)  0,75-0,85
 Stal, powierzchnia hartowana (200°C)  0,52
 Stal, utleniona (200°C)  0,79
 Farba odporna na olej transfor (70°C)  0,94
 Drewno (70°C)  0,94
 Cynk, utleniony  0,1

Parametr ten zmienia się wraz z temperaturą oraz właściwościami powierzchni – dlatego podane wartości powinny być uważane jedynie za wytyczne do pomiaru warunków temperaturowych lub różnic.
W celu obliczenia wartości temperatury absolutnej konieczne jest określenie dokładnej emisyjności materiału.

 

Źródło danych: https://www.testo.com/pl-PL/termografia/tabela-emisyjnosci
Category: Temperatura | Tags: , ,

Dokładny czy niedokładny?

Termometr elektroniczny DT-1

Dokładność pomiaru w przypadku termometrów i termohigrometrów elektronicznych

Dokładność jest to cecha przyrządu, która określa stopień niepewności pomiaru mierzonej przez niego wielkości. Błąd przyrządu pomiarowego (czy też błąd wskazania), to różnica między wartością zmierzoną przez przyrząd a wartością uznawaną za wzorcową.

Jeden z podstawowych zapisów dokładności (często podawany przy opisie termometrów i termohigrometrów elektronicznych) ma postać:

Δt ± (błąd wartości mierzonej temperatury) – np. dokładność pomiaru ± 1°C w przypadku prostego termometru elektronicznego.

Nie ma mierników temperatury bezbłędnych w dokonywanym pomiarze. Każdy termometr może zaniżać wskazania lub je zawyżać.

Przykład:
Termometr elektroniczny ma dokładność pomiaru ± 1°C. Oznacza to, że termometr może zaniżać o 1°C lub może zawyżać o 1°C w stosunku do temperatury otoczenia.
Dwa mierniki mierzące w podobnych warunkach mogą mieć wskazania różniące się od siebie o nawet 2°C – a ich wskazania mieszczą się w określonej dokładności.

Przykład 2:
Termohigrometr elektroniczny ma dokładność pomiaru ± 5%RH. Oznacza to, że termohigrometr może zaniżać o 5%RH lub może zawyżać o 5%RH w stosunku do wilgotności otoczenia.
Dwa mierniki mierzące w podobnych warunkach mogą mieć wskazania różniące się od siebie o nawet 10%RH – a ich wskazania mieszczą się w określonej dokładności.

Stopnie ochrony zapewniane przez obudowy

termometr elektroniczny DT-34

Jeden z najchętniej używanych termometrów elektronicznych (termometr elektroniczny DT-34) ma obudowę zapewniającą stopień ochrony IP 66 – co to dokładnie oznacza?

Stopnie ochrony zapewniane przez obudowy
(wyciąg z normy PN-92/E-08106 / EN 60 529 / IEC 529)

Stopień ochrony obudowy (International Protection) określany jest za pomocą następującego symbolu:

IP – XY

– gdzie X oznacza stopień ochrony przed ciałami obcymi i dotykiem (pierwsza charakterystyczna cyfra),
– a Y oznacza stopień ochrony przed wodą (druga charakterystyczna cyfra).

Pierwsza charakterystyczna cyfra oznacza, że obudowa stwarza ochronę dla osób przed dostępem do części niebezpiecznych przez zapobieganie lub ograniczanie wchodzenia części ludzkiego ciała lub przedmiotu trzymanego przez osobę, równocześnie obudowa stwarza ochronę dla urządzenia w niej znajdującego się przed wchodzeniem obcych ciał. Jeżeli obudowie jest przypisany określony stopień ochrony oznaczony pierwszą charakterystyczną cyfrą, odpowiada ona również wszystkim niższym stopniom ochrony.

Stopnie ochrony osób przed dostępem do części niebezpiecznych oraz przed obcymi ciałami stałymi:

Pierwsza
cyfra kodu
IP-XY
Określenie
0 – bez ochrony
1 – ochrona przed dostępem wierzchem dłoni do części niebezpiecznych – próbnik dostępu, kula o średnicy 50 mm, powinien zachować odpowiedni odstęp od części niebezpiecznych
– ochrona przed obcymi ciałami stałymi o średnicy 50 mm i większej – próbnik przedmiotowy, kula o średnicy 50 mm, nie może wchodzić całkowicie (cała średnica próbnika nie może przejść przez otwór w obudowie)
2 – ochrona przed dostępem palcem do części niebezpiecznych – przegubowy palec probierczy o średnicy 12 mm i długości 80 mm powinien zachować odpowiedni odstęp od części niebezpiecznych
– ochrona przed obcymi ciałami stałymi o średnicy 12,5 mm i większej – próbnik przedmiotowy, kula o średnicy 12,5 mm, nie może wchodzić całkowicie (cała średnica próbnika nie może przejść przez otwór w obudowie)
3 – ochrona przed dostępem narzędziem do części niebezpiecznych – próbnik dostępu o średnicy 2,5 mm nie może wchodzić
– ochrona przed obcymi ciałami stałymi o średnicy 2,5 mm i większej – próbnik przedmiotowy, kula o średnicy 2,5 mm, nie może wchodzić całkowicie (cała średnica próbnika nie może przejść przez otwór w obudowie)
4 – ochrona przed dostępem drutem do części niebezpiecznych – próbnik dostępu o średnicy 1,0 mm nie może wchodzić
– ochrona przed obcymi ciałami stałymi o średnicy 1,0 mm i większej – próbnik przedmiotowy, kula o średnicy 1,0 mm, nie może wchodzić całkowicie (cała średnica próbnika nie może przejść przez otwór w obudowie)
5 – ochrona przed pyłem – przedostanie się pyłu nie jest całkowicie wykluczone, ale pył nie może wnikać w takich ilościach aby zakłócić prawidłowe działanie aparatu, lub zmniejszać bezpieczeństwo.
6 – ochrona pyłoszczelna – pył nie może wnikać

 

Druga charakterystyczna cyfra oznacza stopień ochrony przed szkodliwymi skutkami wnikania wody do chronionego urządzenia. Próby dotyczące drugiej charakterystycznej cyfry przeprowadza się słodką wodą. Ochrona może nie być dostateczna, jeżeli mycie przeprowadza się wodą pod wysokim ciśnieniem i/lub z użyciem rozpuszczalników.

Stopnie ochrony przed wodą:

Druga
cyfra kodu
IP-XY
Określenie
0 – bez ochrony
1 – ochrona przed pionowo padającymi kroplami wody – pionowo padające krople wody nie wywołują szkodliwych skutków
2 – ochrona przed pionowo padającymi kroplami wody przy wychyleniu obudowy do 15° – pionowo padające krople wody przy wychyleniu obudowy o dowolny kąt do 15° od pionu w każdą stronę nie wywołują szkodliwych skutków
3 – ochrona przed natryskiwaniem wodą – woda natryskiwana pod dowolnym kątem do 60° od pionu z każdej strony nie wywołuje szkodliwych skutków
4 – ochrona przed bryzgami wody – woda rozbryzgiwana na obudowę z dowolnego kierunku nie wywołuje szkodliwych skutków
5 – ochrona przed strugą wody – woda lana strugą na obudowę z dowolnej strony nie wywołuje szkodliwych skutków
6 – ochrona przed silną strugą wody – woda lana silną strugą na obudowę z dowolnej strony nie wywołuje szkodliwych skutków
7 – ochrona przed skutkami krótkotrwałego zanurzenia w wodzie – obudowa zanurzona krótkotrwale w wodzie, w znormalizowanych warunkach dotyczących ciśnienia i czasu powinna uniemożliwiać wnikanie takiej ilości wody, która powodowałaby szkodliwe skutki
8 – ochrona przed skutkami ciągłego zanurzenia w wodzie – obudowa ciągle zanurzona w wodzie, w warunkach uzgodnionych między wytwórcą i użytkownikiem, lecz bardziej surowych niż według cyfry 7, powinna uniemożliwiać wnikanie takiej ilości wody, która powodowałaby szkodliwe skutki

Wspomniany na początku termometr DT-34 ma obudowę pyłoszczelną oraz odporną na silną strugę wody laną pod dowolnym kątem.

Category: Temperatura | Tags: , , ,

Wzorcowanie przyrządów pomiarowych

Wzorcowaniem określa się ogół czynności ustalających relację między wartościami wielkości mierzonej wskazanymi przez przyrząd pomiarowy a odpowiednimi wartościami wielkości fizycznych, realizowanymi przez wzorzec jednostki miary wraz z podaniem niepewności tego pomiaru.

W najprostszym przypadku polega to na określeniu różnicy pomiędzy wskazaniem przyrządu wzorcowego (wzorca miary wyższego rzędu) a wskazaniem przyrządu wzorcowanego z uwzględnieniem niepewności pomiaru dokonanego przy pomocy przyrządu wzorcowego.

Czynność wzorcowania przeprowadzają w Polsce:
1) na podstawie ustawy prawo o miarach – organy administracji miar (prezes Głównego Urzędu Miar, dyrektorzy okręgowych urzędów miar i naczelnicy obwodowych urzędów miar)
2) na podstawie normy PN-EN ISO 17025 oraz ustawy o systemie oceny zgodności – laboratoria wzorcujące akredytowane przez Polskie Centrum Akredytacji (PCA),
3) na podstawie ustawy o swobodzie działalności gospodarczej (działalność polegająca na wzorcowaniu nie jest koncesjonowana) – nieakredytowane laboratoria wzorcujące oraz użytkownicy przyrządów pomiarowych.

Celem wzorcowania jest określenie kondycji metrologicznej wzorcowanego przyrządu, określającej jego przydatność do wykonywania pomiarów,  lub poświadczenie, że wzorcowany przyrząd spełnia określone wymagania metrologiczne.

Wynik wzorcowania poświadczany jest w świadectwie wzorcowania.
Świadectwo wzorcowania to dokument potwierdzający że przyrząd spełnia określone właściwości metrologiczne, a tym samym pomiary wykonywane za pomocą tego przyrządu można uznać za wiarygodne i rzetelne.

Obecnie nie istnieją żadne przepisy prawne wyznaczające okresy pomiędzy wzorcowaniami, ani okresy ważności świadectw wzorcowania.

  • ISO 9001 – Tam, gdzie niezbędne jest zapewnienie wiarygodnych wyników, wyposażenie pomiarowe należy wzorcować i/lub sprawdzać w ustalonych odstępach czasu
  • ISO 22000 –  wyposażenie pomiarowe i metody używane
    powinny być kalibrowane i weryfikowane w zaplanowanych odstępach czasu…”

Terminy powtórnych wzorcowań powinny być ustalane przez samego użytkownika przyrządu pomiarowego.

Przyrządy przenośne, narażone na wstrząsy, z regulatorami mechanicznymi lub elektrycznymi i intensywnie eksploatowane, lub eksploatowane w trudnych warunkach –  powinny być wzorcowane częściej (np. raz na rok), natomiast takie, które nie mają regulacji, są przechowywane w warunkach laboratoryjnych i są rzadko używane zwykle wzorcuje się rzadziej (2-3 lata).

Świadectwo wzorcowania traci swoją ważność w przypadku uszkodzenia przyrządu pomiarowego lub kiedy wskazania zaczynają budzić wątpliwość.

Najpopularniejsze wzorcowane przyrządy pomiarowe mierzące ciśnienie, temperaturę lub wilgotność:
termometry szklane laboratoryjne
manometry kontrolne do prób ciśnieniowych
termohigrometry mierzące temperaturę i wilgotność otoczenia

 

2017 ostatnim rokiem termometrów rtęciowych

ROZPORZĄDZENIE KOMISJI (UE) NR 847/2012 z dnia 19 września 2012 r wprowadziło zakaz wprowadzania do obrotu termometrów lekarskich oraz urządzeń pomiarowych przeznaczonych do powszechnej sprzedaży zawierających rtęć i przeznaczonych do użytku przemysłowego i profesjonalnego.

Rozporządzenie przewiduje także odstępstwo od ograniczenia dla m.in. termometrów przeznaczonych wyłącznie do przeprowadzania testów zgodnie z normami, które wymagają stosowania termometrów rtęciowych, do dnia 10 października 2017 r.
Ponieważ ustawodawca nie określił katalogu norm do jakich odnosi się powyższy zapis, należy przyjąć, iż jest to katalog otwarty. Oznacza to, że do dnia 10 października 2017 r. dozwolone jest wprowadzenie do obrotu termometrów rtęciowych przeznaczonych do przeprowadzania testów zgodnie z wszystkimi normami.
„Wprowadzenie do obrotu” rozumiane jest jako odpłatne lub nieodpłatne dostarczenie lub udostępnienie stronie trzeciej.

Termometry rtęciowe przeznaczone do przeprowadzania testów to np. termometry laboratoryjne oraz termometry meteorologiczne.

Należy dodać, że nabyte termometry można będzie po 10 pażdziernika 2017r  nadal używać – aż do ich fizycznego zniszczenia.

Rejestracja temperatury – monitoring w przemyśle spożywczym

Rejestratory temperatury serii TERMIO.

Wyprodukowane w Polsce precyzyjne rejestratory temperaTermio-15tury.
Bardzo dokładny pomiar temperatury z możliwością zapisu wyników pomiarów w pamięci wewnętrznej.
Zapisane w pamięci wewnętrznej wyniki można przenieść do pamięci komputera z systemem Windows w celu ich dalszej obróbki.

W zależności od typu rejestratora i sposobu pomiaru temperatury (czujnik wbudowany lub na przewodzie) miernik może służyć do monitorowania temperatury podczas przechowywania i transportu szczepionek, leków, żywności, podczas procesu produkcyjnego, magazynowania itp.

Funkcje i dane wspólne rejestratorów Termio:
– pomiar temperatury w °C
– rejestracja temperatury (możliwość zapisu 32000 wyników pomiaru)
– sygnalizacja rejestracji
– wyświetlanie informacji o przekroczonych wartościach dopuszczalnych strzałkami na wyświetlaczu oraz migająca czerwoną diodą
– start bezpośrednio z komputera, z opóźnieniem czasowym lub za pomocą przycisku START/STOP
– dostęp do wartości maksymalnej i minimalnej zapisanej w pamięci
– sygnalizacja niskiego stanu baterii
– wyświetlacz LCD
– zasilanie bateria 1/2xAA 3,6V
– interfejs USB
– wymiary obudowy 45x100x19 mm
– stopień ochrony obudowy IP65
– waga 85g

Dane szczegółowe rejestratorów Termio:

Rejestrator temperatury Termio-1 z czujnikiem zewnętrznym na przewodzie

  • zakres mierzonych temperatur -50°C do 270°C
  • rozdzielczość w całym zakresie pomiarowym 0,01 °C
  • dokładność pomiaru -/+0,07°C lub lepsza
  • częstość zapisu od 1 sekundy
  • częstość próbkowania pomiarów 2 x 1 sekundę

 

Rejestrator temperatury Termio-2 z czujnikiem zewnętrznym na przewodzTermio-2ie

  • zakres mierzonych temperatur -50°C do 270°C
  • rozdzielczość w całym zakresie pomiarowym 0,01 °C
  • dokładność pomiaru w zakresie 0°C-100°C: -/+0,07°C, w zakresie do 150°C: -/+0,15°C, do 200°C: -/+0,3°C
  • częstość zapisu od 1 minuty
  • częstość próbkowania pomiarów 2 x 1 minutę (zmniejszenie częstotliwości próbkowania w stosunku do Termio-1 wydłuża żywotność baterii)

 

Rejestrator temperatury Termio-15 z czujnikiem wbudowanym w urządzenie

  • zakres mierzonych temperatur -30°C do 70°C
  • rozdzielczość w całym zakresie pomiarowym 0,01 °C
  • dokładność pomiaru -/+0,3°C lub lepsza
  • częstość zapisu od 1 minuty

 

Rejestrator temperatury Termio-31 z wymienną sondą pomiarową typu K

  • zakres mierzonych temperatur zależny od zastosowanej sondy (w przedziale -200°C do 1400 °C)
  • rozdzielczość wskazań 0,01 °C
  • dokładność pomiaru lepsza niż 1°C (zależna od rodzaju sondy)
  • częstość zapisu od 1 sekundy

[Reklama] Termometry elektroniczne HACCP

Wysokiej jakości przemysłowe i wzorcowe termometry elektroniczne – duża dokładność pomiaru, niska cena, szerokie zastosowanie.
Przykładowe zastosowania: do laboratoriów, w przemyśle spożywczym (do wędzarni, do mięsa, do pieczenia, do mrożonek, do mleka),w przemyśle farmaceutycznym, w transporcie.

Termometry z sondą penetracyjną (szpikulcową) są niezbędne np. przy kontroli temperatury przy odbiorze produktów spożywczych w transporcie (HACCP)

Nowe – ulepszone wersje! Równie wysoka dokładność pomiaru przy szerszym zakresie pomiarowym temperatury.

Termometry wyposażone w świadectwo wzorcowania wystawione przez laboratorium pomiarowe producenta.

Termometr elektroniczny DT-1Termometr elektroniczny DT-1

  •  zakres mierzonych temperatur -50°C do 270°C
  • zakres temperatur pracy -30°C do 40°C
  • rozdzielczość 0,1°C
  • dokładność pomiaru -/+0,1°C
  • zasilanie 1/2xAA
  • wyświetlacz LCD 3 1/2 cyfry
  • wymiary obudowy 45x100x19 mm
  • stopień ochrony obudowy IP66
  • wymiary sondy 3×100 mm
  • długość przewodu Lp=1 m
  • materiał osłony czujnika stal kwasoodporna 1H18N9T

 

Termometr elektroniczny DT-34Termometr elektroniczny DT-34

  • zakres mierzonych temperatur -50°C do 270°C
  • zakres temperatur pracy 0°C do 40°C
  • rozdzielczość 0,1°C
  • dokładność pomiaru -/+0,1°C
  • zasilanie bateryjne 2xAA
  • wyświetlacz LCD 3 1/2 cyfy
  • wymiary obudowy 150x82x29 mm
  • stopień ochrony obudowy IP66
  • wymiary sondy 3,3×120 mm
  • długość przewodu 1 m
  • materiał osłony czujnika stal kwasoodporna 1H18N9Tsklep internetowy
Category: Reklama, Temperatura | Tags: ,

Pomiar bez kontaktu – pirometry

Pirometr jest przyrządem pomiarowym służącym do bezkontaktowego pomiaru temperatury powierzchni.

Każdy przedmiot o temperaturze dodatniej emituje promieniowanie podczerwone, niewidoczne dla oczu. Natężenie tego promieniowania jest tym większe, im wyższa jest temperatura przedmiotu.

Pirometr mierzy natężenie promieniowania podczerwonego dochodzącego od przedmiotu do jego obiektywu.

W doborze pirometru – oprócz zakresu pomiarowego i dokładności pomiaru – należy wziąć pod uwagę następujące parametry:

– rozdzielczość optyczna – wyrażana jest stosunkiem odległości D do średnicy pola pomiaru S. Np. dla rozdzielczości 10:1 przy średnicy mierzonego przedmiotu 1cm odległość nie może przekroczyć 10 cm. W przeciwnym przypadku pirometr będzie zbierał promieniowanie podczerwone nie tylko z przedmiotu, ale także z otoczenia (tła).

– współczynnik emisyjności (zdolność do wysyłania promieniowania podczerwonego) – standardowe pirometry dostarczane są z współczynnikiem emisyjności ustawionym na 0,95 (ciało prawie czarne). Do pomiaru temperatury jasnych powierzchni należy stosować pirometry ze zmiennym współczynnikiem emisyjności, lub „przyczerniać” powierzchnię mierzonego przedmiotu

Pirometry - kliknij aby kupić

Category: Temperatura | Tags: , ,

Jak metal z metalem – termometry bimetaliczne

Tarczowe termometry bimetaliczne mierzą za pomocą dwóch kawałków metalu (bimetalu).

Element pomiarowy wykonany jest z pasków dwóch różnych metali lub stopów złączonych ze sobą na całej długości w ten sposób, że wzajemne przesunięcia wzdłużne obu pasków są niemożliwe. Oba paski mają różne współczynniki rozszerzalności. Zmiana temperatury powoduje powstawanie różnicy długości pasków, w wyniku czego połączone paski zaczynają się odginać. Wielkość wygięcia płytki bimetalicznej jest funkcją temperatury.

W termometrach bimetalicznych montowany jest najczęściej bimetal zwinięty spiralnie lub śrubowo. Jeden koniec połączony jest ze wskazówką na podzielni. Zmiany temperatury i zmiany odkształceń spirali powodują ruch wskazówki na podzielni.

Termometr bimetaliczny

Category: Temperatura | Tags: ,

Jak dawniej mierzono temperaturę

Pierwszym „urządzeniem” do mierzenia temperatury był ludzki palec. Poprzez dotyk można określić czy dotykana powierzchnia jest zimna, ciepła czy wręcz gorąca. Garncarze, piekarze, kowale oraz platnerze potrafili określić przybliżoną temperaturę po barwie rozgrzanego przedmiotu. „Pomiar” ten nie można jednak nazwać dokładnym.

Pierwszy przyrząd wykorzystujący cieplną rozszerzalność ciał opisał w III w p.n.e. Filon z Bizancjum, grecki filozof, pisarz i mechanik. Przyrząd ten nie był jeszcze termometrem, tylko termoskopem – pozwalał tylko na określenie różnicy temperatury ciał. Przyrząd składał się z jednostronnie zasklepionej rurki. Jej otwarty koniec zanurzony był z kolei w naczyniu napełnionym płynem. Rurka nie miała skali, a jedynie dwa ruchome znaczniki umożliwiające zaznaczanie zmiany temperatury.

W 1593 roku Galileusz zbudował pierwszy nowożytny termoskop modyfikując termoskop Filona z Bizancjum. Galileusz zmodyfikował to urządzenie, stosując zamiast rurki rozszerzającą się ku górze – bańkę. Poprawił w ten sposób czułość wskaźnika.

Termoskop miał podstawową wadę –  reagował nie tylko na zmiany temperatury, ale także na zmiany ciśnienia atmosferycznego

Termoskop

Za wynalazcę urządzenia zwanego termometrem (miernika temperatury posiadającego skalę termometryczną) uważa się holenderskiego fizyka i inżyniera Gabriela Fahrenheita. Na początku XVIII opracował wczesne wersje termometru – najpierw alkoholowy, później rtęciowy. Termometr składał się z wąskiej, szklanej rurki ze zbiorniczkiem na ciecz u dołu. Zbiorniczek wypełniony był cieczą (patrz – Termometr cieczowy).  Fahrenheit wprowadził skalę pomiaru temperatury, nazwaną później jego nazwiskiem (patrz – Skale termometryczne).

 

Category: Temperatura | Tags: ,